Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.

For the best experience please use the latest Chrome, Safari or Firefox browser.

Convex Hulls of Random Walks in High Dimensions:
A Large-Deviation Study


Hendrik Schawe

Alexander K. Hartmann

Satya N. Majumdar

Random Walks
1/12
$T=500$
2/12
Convex Hulls

Convex Hull of a point set

$\Omega(T^{\left \lfloor d/2 \right \rfloor})$
Divide and Conquer:
Quickhull[1]
[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, ACM TOMS 22, 469 (1996)
3/12
$T=500$
4/12
[2] R. Eldan, Electron. J. Probab. 19, 45 (2014)
5/12
Sampling

Sampling the Distribution

$$p_\mathrm{acc}(S_i \to S_{i+1}) = \min\left(\frac{g(S_{i})}{g(S_{i+1})}, 1\right)$$
[3] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)
[4] R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E 75, 046701 (2007)
6/12
7/12
[3] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)
[4] R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E 75, 046701 (2007)
8/12
Results

Distribution

$d=4$
9/12

Scaling

Observables scale as $T^{d/2}$ with their effective dimension.
Here $d=4$ dimensional hypervolume $V$.
10/12
$$\widetilde{S}^{(d-1)/d} \mathrm{e}^{-b\widetilde{S}^{2/d}}$$ from the distribution of the $d=1$ span
G. Claussen, A. K. Hartmann, and S. N. Majumdar, Phys. Rev. E 91, 052104 (2015)

Left Tail

11/12

Conclusion


Outlook

12/12

Use a spacebar or arrow keys to navigate