Convex Hulls of Random Walks in High Dimensions:
A Large-Deviation Study
Hendrik Schawe
Alexander K. Hartmann
Satya N. Majumdar
Random Walks
- position →x(t) is sum of random Gaussian steps →δi
→x(t)=t∑i=1→δi,t≤T
- same asymptotics when on a lattice
- scales as r∝Tν,ν=1/2
- model for diffusion/Brownian motion
- simple model for animal movement
1/12
Convex Hull of a point set
- smallest convex polytope around points
{x(t)|t∈{0,..,T}}
[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa,
ACM TOMS 22, 469 (1996)
3/12
- characterizes a random walk
- e.g. home ranges of animals in d=2
- mean values known for T→∞[2]
⟨V⟩/Td/2=(π2)d/2Γ(d2+1)−2
- we will look at their full distribution
[2] R. Eldan, Electron. J. Probab. 19, 45 (2014)
5/12
Sampling the Distribution
- Simple sampling works only for high P
- What about the P≪10−100 tails?
- (modified[4]) Wang Landau sampling[3]
- accept with Metropolis probabilty
pacc(Si→Si+1)=min(g(Si)g(Si+1),1)
- iteratively adapt g → flat histogram
[3] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)
[4] R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E 75, 046701 (2007)
6/12
- classical[3]:
- lngi+1=lngi+f
- f↦f/2 after every histogram reset
- modifying g → no detailed balance
- to reduce systematic error, different schedule[4] (t is Monte Carlo time)
- lngi+1=lngi+t−1
[3] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)
[4] R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E 75, 046701 (2007)
8/12
Distribution
d=4
9/12
Scaling
Observables scale as Td/2 with their effective dimension.
Here d=4 dimensional hypervolume V.
10/12
˜S(d−1)/de−b˜S2/d
from the distribution of the d=1 span
G. Claussen, A. K. Hartmann, and S. N. Majumdar, Phys. Rev. E 91, 052104 (2015)
Left Tail
11/12
Conclusion
- The large deviation properties of the d=1 span of random walks
seem to be easily extended to larger d.
Outlook
- Multiple Walks
- Self-Interacting Walks (SAW, LERW, ...)
Poster session DY 60.1 on Thursday
12/12