Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.
For the best experience please use the latest Chrome, Safari or Firefox browser.
Convex Hulls of Random Walks in High Dimensions:
A Large-Deviation Study
Hendrik Schawe
Alexander K. Hartmann
Satya N. Majumdar
Random Walks
- position $\vec{x}(t)$ is sum of random Gaussian steps $\vec\delta_i$
$$\vec x(t) = \sum_{i=1}^t \vec\delta_i, \quad t \le T$$
- same asymptotics when on a lattice
- scales as $r \propto T^{\nu}, \nu=1/2$
- model for diffusion/Brownian motion
- simple model for animal movement
1/12
Convex Hull of a point set
- smallest convex polytope around points
$$\{x(t) | t \in \{0, .., T\}\}$$
[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa,
ACM TOMS 22, 469 (1996)
3/12
- characterizes a random walk
- $\partial V$ surface
- $V$ volume
- e.g. home ranges of animals in $d=2$
- mean values known for $T\to\infty$[2]
$$\left< V \right> / T^{d/2} = \left( \frac{\pi}{2} \right)^{d/2} \Gamma \left( \frac{d}{2} + 1 \right)^{-2}$$
- we will look at their full distribution
[2] R. Eldan, Electron. J. Probab. 19, 45 (2014)
5/12
Sampling the Distribution
- Simple sampling works only for high $P$
- What about the $P \ll 10^{-100}$ tails?
- (modified[4]) Wang Landau sampling[3]
- accept with Metropolis probabilty
$$p_\mathrm{acc}(S_i \to S_{i+1}) = \min\left(\frac{g(S_{i})}{g(S_{i+1})}, 1\right)$$
- iteratively adapt $g$ $\to$ flat histogram
[3] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)
[4] R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E 75, 046701 (2007)
6/12
- classical[3]:
- $\ln g_{i+1} = \ln g_{i} + f$
- $f \mapsto f/2$ after every histogram reset
- modifying $g$ $\to$ no detailed balance
- to reduce systematic error, different schedule[4] ($t$ is Monte Carlo time)
- $\ln g_{i+1} = \ln g_{i} + t^{-1}$
[3] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)
[4] R. E. Belardinelli and V. D. Pereyra, Phys. Rev. E 75, 046701 (2007)
8/12
Distribution
$d=4$
9/12
Scaling
Observables scale as $T^{d/2}$ with their effective dimension.
Here $d=4$ dimensional hypervolume $V$.
10/12
$$\widetilde{S}^{(d-1)/d} \mathrm{e}^{-b\widetilde{S}^{2/d}}$$
from the distribution of the $d=1$ span
G. Claussen, A. K. Hartmann, and S. N. Majumdar, Phys. Rev. E 91, 052104 (2015)
Left Tail
11/12
Conclusion
- The large deviation properties of the $d=1$ span of random walks
seem to be easily extended to larger $d$.
Outlook
- Multiple Walks
- Self-Interacting Walks (SAW, LERW, ...)
Poster session DY 60.1 on Thursday
12/12